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Paradigms of VL Deployment: Continual Learning
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Dynamic, continually evolving paradigm
Unexplored in multimodal domain!
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Challenges of Multimodal Continual Learning Deployment
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CLiMB: The Continual Learning in Multimodality Benchmark
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|. Multimodal and Unimodal Tasks

Vision-and-Language Tasks

Visual Question Answering (VQAV2)

Natural Language Visual Reasoning (NLVR2)
Visual Entailment (SNLI-VE)

Visual Commonsense Reasoning (VCR)

Language-Only Tasks IMDb, SST-2 Sentiment Classification
HellaSwag
CommonsenseQA

Physical Interaction QA (PIQA)

Vision-Only Tasks ImageNet-1K Image Classification
iNaturalist2019 Image Classification
Places365 Image Classification

MS-COCO Object Detection

CLiMB can be easily extended to include new multimodal and unimodal tasks!
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|l. Continual Learning Models
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l11. Continual Learning Algorithms

Currently, CLiIMB supports 6 different Continual Learning algorithms:

e Sequential Fine-tuning: Fine-tune full encoder and task-specific layers
e Frozen Encoder: Train only task-specific layers
e Frozen Bottom-K: Fine-tune only top encoder layers and task layers
o WesetK=9
e Experience Replay (ER)
e Elastic Weight Consolidation (EWC)
e Adapters



USC Viterbi

School of Engineering

Experience Replay
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Elastic Weight Consolidation
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Adapters

Insert new task-specific parameters
into Transformer layers

Transformer parameters kept
frozen - no forgetting!

Fewer learnable parameters,
faster to train

Comparable performance as full
model fine-tuning

No cross-task knowledge
transfer
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IV. Evaluation

I. Upstream Knowledge
Transfer for new tasks
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Upstream Evaluation ll: Forgetting Transfer

Directly evaluate on previously learned task j
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Downstream Evaluation: Low-Shot Transfer
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e 4V+L Tasks, ordered VQA — NLVR2 — SNLI-VE — VCR
e VILT-based continual learning model
e 6 different Continual Learning algorithms
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Results I: Upstream Continual Learning

Upstream Knowledge Transfer: How does Continual Learning affect
model’s ability to learn newly arriving tasks?

Alg A Par-ams Task 1 Task 2 Task 3 Task 4
Trained VQAvV2 NLVR2 SNLI-VE VCR

Direct FT 100% [67.70] [73.07] [76.31] [61.31]

SeqFT 100% 0.13% [67.79] -1.80% [72.66] -3.33% [74.89] -5.09% [59.47]

Frozen Enc 7.88% -14.10% [58.15] -40.78% [63.66] -15.98% [69.45] -53.47% [41.90]
Frozen B9  25.92% -0.58% [67.30] -0.58% [72.94] -3.31% [74.90]  -15.49% [55.69]
ER 100% 0.26% [67.87] 0.56% [73.20] -2.89% [75.08] -4.45% [59.70]
EWC 100% 0.20% [67.84] -2.79% [72.39] -4.52% [74.38] -4.86% [59.55]
Adapters 13.02% 0.59% [68.10] 2.55% [73.66] -0.56% [76.08] -0.36% [61.18]

e More continual learning hurts ability to learn new tasks
e Adapters do not show negative transfer, comparable to full model fine-tuning
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Results I: Upstream Continual Learning

° 75 1
Forgetting: How does < o
learning new tasks affect <
model’s performance on g O - »
2] 100
already-learned tasks? S
S5 o~
e More fine-tuned params < § 0.
== more forgetting o "
=, @ 2
e ER>EWC ? 100
e Adapters >>>> S L SeqF'T ER
. 5 > Frozen-B9 EWC
e Forgetting more severe = Z *°| —e— FrozenEnc & Adapters
after VCR N B
Task 2: NLVR2 Task 3: SNLI-VE Task 4: VCR

Upstream Learning Task
O



USC Viterbi

School of Engineering

Experiments and Results Il: Downstream Low-Shot Transfer
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Experiments and Results Il: Downstream Low-Shot Transfer

Low-Shot Transfer to
Vision-Only Tasks
Language prompt: “This is an
image.”

e VILT achieves good
low-shot performance on
vision tasks

e CL hurts low-shot transfer

e NLVR2 and VCR have more
negative effect
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Experiments and Results Il: Downstream Low-Shot Transfer

Low-Shot Transfer to
Language-Only Tasks

Adapting ViLT for NLP tasks:

e Use "average” MS-COCO
image for in-distribution
visual input

e Extend language position
embeddings

e VILT-BERT: Replace
language input embeddings
with BERT representations
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Experiments and Results Il: Downstream Low-Shot Transfer
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Conclusions

e We propose CLiMB, a benchmark to study CL in multimodal settings

e CLiMB is an extensible community tool for studying tasks, model
architectures, and CL algorithms.

e Existing Continual Learning methods fail at:
o generalizing well to sequences of multimodal tasks
o Enabling low-shot adaptation to multi/unimodal tasks

e Adapters are most effective at preserving pre-trained model knowledge
and forgetting mitigating

e Thereis a need for new research into Continual Learning strategies for
this challenging multimodal setting.
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Future Directions

e Adapters that share knowledge across tasks
e Multimodal Adapters
e Studying multimodal distribution shifts
e Building a task-agnostic modeling framework:
o Sequence-to-sequence task formulations
o Integrating generalist models into CLiIMB

o Embodied navigation, task completion
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